BATHYMETRIC GRIDS FOR TSUNAMI MODELING

CHRISTOPHER CHAMBERLIN

NOAA CENTER FOR TSUNAMI RESEARCH PACIFIC MARINE ENVIRONMENTAL LABORATORY, SEATTLE WA

SUMMARY

- ** Bathymetric and topographic data sources
- * Data quality control
- ** Techniques and tools for compiling data
- ** Creating and refining model grids

BATHYMETRIC SURVEY

* Singlebeam survey

Multibeam surveys

** Bathymetric LiDAR

TOPOGRAPHIC SURVEY

***** Leveling

** Photogrammetry

**Topographic LiDAR

Space-based Radar (SRTM)

OTHER DATA SOURCES

- Chart soundings and contours
- ** Topographic maps
- ** Aerial and satellite photography
- Engineering and scientific reports

ONLINE GLOBAL DATA

ETOPO1

- Global bathymetry and topography at 1 arc-minute
- * http://www.ngdc.noaa.gov/mgg/global/global.html

**Shuttle Radar Topography Mission (SRTM)

- * 3 arc-second (~90m) global topography
- http://srtm.csi.cgiar.org/
- http://srtm.usgs.gov/

ONLINE GLOBAL DATA

- National Geophysical Data Center (USA)
 - http://ngdc.noaa.gov/
 - Multibeam surveys
 - Track lines
- International Hydrographic Organization
 - http://www.iho-ohi.net/english/ world-bathymetry/

DATA QUALITY CONTROL

Check datasets before compiling grid

Bad depths? Bad locations?

HORIZONTAL DATUM

All data must be relative to the same datum!

- Datum: description of the shape and size of the earth, and location of the zero point
- ****** Our models use:
 - **WGS 84 datum**
 - * Decimal degree coordinate system
- Reproject and change datums of data with GIS or PROJ.4.

VERTICAL DATUM

All data must be relative to the same datum!

- * Add or subtract depth values to make their zero point (datum) the same
- Our models use the mean high water datum

COMPILE SOURCE GRID

- Source grids provide a starting point for developing model grids
- Use the highest resolution that is supported by your data
 - * 1 arc-minute (30 m) or less if possible

TOOLS FOR GRID DEVELOPMENT

GIS software

- * ArcGIS: helpful but expensive
- * Open source options: GRASS, QGIS

**** MBSystem**

- Reads most native multibeam file formats plus xyz point data
- # Handles very large datasets very well
- * Open source: http://www.ldeo.columbia.edu/res/pi/MB-System/

SAMPLE GRIDS FOR TRAINIG

- Data quality suitable for testing and training, but *not* for final products
- ** Automatically generated from public sources:
 - **ETOPO1** bathymetry
 - * SRTM topography
- *3 arc-second (~90 m) grid cell size
 - ** Bathymetry interpolated from 1 arc-minute source

SAMPLE GRIDS FOR TRAINING

Available in ComMIT: Model → New Model Run.

SAMPLE GRIDS FOR TRAINING

Available in ComMIT: Model - New Model Run.

MODEL GRIDS: EXTENT

- * Determine the outline of your study area
- This version of ComMIT & MOST always uses three nested grids
- Try to include major features that might affect wave dynamics: islands, bays, shoals
- If possible, outermost (A) grid should extend
 to 1000 m depth contour

MODEL GRIDS: EXTENT

- Grid size (number of nodes) has a major impact on the model running time
- The ComMIT Server will not produce grids larger than 160,000 (400x400) nodes

MODEL GRIDS: CELL SIZES AND FILE FORMATS

- **Common model grid cell size for forecast modeling with MOST
 - * A grid: 2 arc-minute
 - * B grid: 30 arc-second
 - * C grid: 3 arc-second
 - → Models for hazard assessment may use smaller cell sizes if the source data allows

MODEL GRIDS: FILE FORMAT

- ComMIT and MOST can use two formats for bathymetry grids:
 - "MOST format" (see the MOST manual PDF)
 - ****** ESRI ASCII raster
- Model output is always in NetCDF

MODEL SETUP: PARAMETERS

See the ComMIT Help menu for a summary of the model parameters

The MOST manual has complete details.

0.0010	Minimum amp. of input offshore wave (m)
5.0	Minimum depth of offshore (m)
0.1	Dry land depth of inundation (m)
0.0009	Friction coefficient (n²)
V	Let A-Grid and B-Grid run up
300.0	Max eta before blow-up (m)
1.20	Time step (sec)
40000	Total number of time steps in run
9	Time steps between A-Grid computations
3	Time steps between B-Grid computations
27	Time steps between output steps
0	Time steps before saving first output step
1	Save output every n-th grid point

MODEL SETUP: PARAMETERS

Most important parameters:

- Time step
- Total number of steps in run
- Time steps between A/B grid

MODEL TESTING: STABILITY

MODEL TESTING: STABILITY

MODEL TESTING: STABILITY

The model must be stable (no "blow ups") under any reasonable source scenario

Use large and small events

ComMIT's Smooth Bathymetry Tool can help

MODEL TESTING: ACCURACY

The model must accurately forecast real tsunami events

MODEL TESTING: ACCURACY

Sea level data for comparison: http://www.ioc-sealevelmonitoring.org/

TOOLS FOR GRID PROCESSING

***** Matlab

- ** NetCDF support: Matlab 2009+, or use mexnc for older versions.
- Some things that are useful:
 - **Crop**
 - * Resample/regrid
 - Plotting tools
- ComMIT's Smooth Bathymetry tool

